Factorial BG ANOVA

Psy 420 Ainsworth

Topics in Factorial Designs

- Factorial?
 - Crossing and Nesting
- Assumptions
- Analysis
 - Traditional and Regression Approaches
 - Main Effects of IVs
 - Interactions among IVs
 - Higher order designs
 - "Dangling control group" factorial designs
- Specific Comparisons
 - Main Effects
 - Simple Effects
 - Interaction Contrasts
- Effect Size estimates
- Power and Sample Size

- Factorial means that all levels of one IV are completely crossed with all level of the other IV(s).
 - Crossed all levels of one variable occur in combination with all levels of the other variable(s)
 - Nested levels of one variable appear at different levels of the other variable(s)

• Crossing example

		Teaching Method		
		Lecture	Media	Lecture/Media
Text book	Tabachnick and Fidell	L & TF	M & TF	LM & TF
	Keppel and Wickens	L & KW	M & KW	LM & KW

- Every level of teaching method is found together with every level of book
- You would have a different randomly selected and randomly assigned group of subjects in each cell
 - Technically this means that subjects are nested within cells

Crossing Example 2 – repeated measures

	Pre - test	Mid - test	Post - test
	s1	s1	s1
	s2	s2	s2
Subjects	s3	s3	s3
	s4	s4	s4
	s5	s5	s5

In repeated measures designs subjects cross the levels of the IV

• Nesting Example

		Teaching Method			
	Lecture		Media	Lecture/Media	
Text book	T and F	L & TF/ Class 1	M & TF/ Class 3	LM & TF/ Class 5	
	K and W	L & KW/ Class 2	M & KW/ Class 4	LM & KW/ Class 6	

- This example shows testing of classes that are preexisting; no random selection or assignment
- In this case classes are nested within each cell which means that the interaction is confounded with class

Assumptions

- Normality of Sampling distribution of means
 - Applies to the individual cells
 - 20+ DFs for error and assumption met
- Homogeneity of Variance
 - Same assumption as one-way; applies to cells
 - In order to use ANOVA you need to assume that all cells are from the same population

Assumptions

Independence of errors

- Thinking in terms of regression; an error associated with one score is independent of other scores, etc.
- Absence of outliers
 - Relates back to normality and assuming a common population

- Extension of the GLM to two IVs $Y = \mu + \alpha + \beta + \alpha\beta + \varepsilon$
 - α = deviation of a score, Y, around the grand mean, µ, caused by IV A (Main effect of A)
 - β = deviation of scores caused by IV B (Main effect of B)
 - αβ = deviation of scores caused by the interaction of *A* and *B* (Interaction of AB), above and beyond the main effects

- Performing a factorial analysis essentially does the job of three analyses in one
 - Two one-way ANOVAs, one for each main effect
 - And a test of the interaction
 - Interaction the effect of one IV depends on the level of another IV
 - e.g. The T and F book works better with a combo of media and lecture, while the K and W book works better with just lecture

 The between groups sums of squares from previous is further broken down;

• Before
$$SS_{bg} = SS_{effect}$$

- Now $SS_{bg} = SS_A + SS_B + SS_{AB}$
- In a two IV factorial design A, B and AxB all differentiate between groups, therefore they all add to the SS_{bg}

- Total variability = (variability of A around GM) + (variability of B around GM) + (variability of each group mean {AxB} around GM) + (variability of each person's score around their group mean)
- $SS_{Total} = SS_A + SS_B + SS_{AB} + SS_{S/AB}$

$$\sum_{i} \sum_{a} \sum_{b} (Y_{iab} - GM)^{2} = n_{a} \sum (\overline{Y}_{a} - GM)^{2} + n_{b} \sum (\overline{Y}_{b} - GM)^{2}$$
$$+ \left[n_{ab} \sum_{a} \sum_{b} (\overline{Y}_{ab} - GM)^{2} - n_{a} \sum (\overline{Y}_{a} - GM)^{2} - n_{b} \sum (\overline{Y}_{b} - GM)^{2} \right]$$
$$+ \sum_{i} \sum_{a} \sum_{b} (Y_{iab} - \overline{Y}_{ab})^{2}$$

Degrees of Freedom

• $df_{effect} = #groups_{effect} - 1$

•
$$df_{AB} = (a - 1)(b - 1)$$

- $df_{s/AB} = ab(s 1) = abs ab = abn ab$ = N - ab
- $df_{total} = N 1 = a 1 + b 1 + (a 1)(b 1) + N ab$

Breakdown of sums of squares

Breakdown of degrees of freedom

Mean square

- The mean squares are calculated the same
- SS/df = MS
- You just have more of them, $\rm MS_A, \, MS_B, \, MS_{AB}, \,$ and $\rm MS_{S/AB}$
- This expands when you have more IVs
 - One for each main effect, one for each interaction (two-way, three-way, etc.)

F-test

- Each effect and interaction is a separate Ftest
- Calculated the same way: $MS_{effect}/MS_{S/AB}$ since $MS_{S/AB}$ is our variance estimate
- You look up a separate F_{crit} for each test using the df_{effect}, df_{S/AB} and tabled values

Sample data

	B: Vacation Length			
A: Profession	b1: 1 week	b2: 2 weeks	b3: 3 weeks	
	0	4	5	
a1: Administrators	1	7	8	
	0	6	6	
	5	5	9	
a2: Belly Dancers	7	6	8	
	6	7	8	
	5	9	3	
a3: Politicians	6	9	3	
	8	9	2	

 $\sum Y^2 = 0^2 + 1^2 + \dots + 2^2 = 1046$

Sample data

Sample info

- So we have 3 subjects per cell
- A has 3 levels, B has 3 levels
- So this is a 3 x 3 design

- Marginal Totals we look in the margins of a data set when computing main effects
- Cell totals we look at the cell totals when computing interactions
- In order to use the computational formulas we need to compute both marginal and cell totals

Sample data reconfigured into cell and marginal totals

	E			
A: Profession	b ₁ : 1 week	b ₂ : 2 weeks	b ₃ : 3 weeks	Marginal Sums for A
a ₁ : Administrators	1	17	19	a ₁ = 37
a2: Belly Dancers	18	18	25	a ₂ = 61
a ₃ : Politicians	19	27	8	a ₃ = 54
Marginal Sums for B	b ₁ = 38	b ₂ = 62	b ₃ = 52	T = 152

Formulas for SS

$$SS_{A} = \frac{\sum \left(\sum a_{j}\right)^{2}}{bn} - \frac{T^{2}}{abn}$$

$$SS_{B} = \frac{\sum \left(\sum b_{k}\right)^{2}}{an} - \frac{T^{2}}{abn}$$

$$SS_{AB} = \frac{\sum \left(\sum ab_{jk}\right)^{2}}{n} - \frac{\sum \left(\sum a_{j}\right)^{2}}{bn} - \frac{\sum \left(\sum b_{k}\right)^{2}}{an} + \frac{T^{2}}{abn}$$

$$SS_{S/AB} = \sum Y^{2} - \frac{\sum \left(\sum ab_{jk}\right)^{2}}{n}$$

$$SS_{T} = \sum Y^{2} - \frac{T^{2}}{abn}$$

• Example

 $SS_{A} = \frac{37^{2} + 61^{2} + 54^{2}}{3(3)} - \frac{152^{2}}{3(3)(3)} = 889.55 - 855.7 = 33.85$ $SS_B = \frac{38^2 + 62^2 + 52^2}{3(3)} - \frac{152^2}{3(3)(3)} = 888 - 855.7 = 32.30$ $SS_{AB} = \frac{1^2 + 17^2 + 19^2 + 18^2 + 18^2 + 25^2 + 19^2 + 27^2 + 8^2}{10^2}$ 3 $\frac{37^2 + 61^2 + 54^2}{3(3)} - \frac{38^2 + 62^2 + 52^2}{3(3)} + \frac{152^2}{3(3)(3)}$ =1026 - 889.55 - 888 + 855.7 = 104.15

• Example

$$SS_{S/AB} = 1046 - \frac{1^2 + 17^2 + 19^2 + 18^2 + 18^2 + 25^2 + 19^2 + 27^2 + 8^2}{3}$$
$$= 1046 - 1026 = 20$$
$$152^2$$

$$SS_T = 1046 - \frac{152^2}{3(3)(3)} = 1046 - 855.7 = 190.30$$

• Example

$$df_{A} = a - 1 = 3 - 1 = 2$$

$$df_{B} = b - 1 = 3 - 1 = 2$$

$$df_{AB} = (a - 1)(b - 1) = (3 - 1)(3 - 1) = 2(2) = 4$$

$$df_{S/AB} = abn - ab = 27 - 9 = 18$$

$$df_{total} = abn - 1 = 27 - 1 = 26$$

• Example

Source	SS	df	MS	F
Profession	33.85	2	16.93	15.25
Length	32.3	2	16.15	14.55
Profession x Length	104.15	4	26.04	23.46
Subjects/Profession x Length	20	18	1.11	
Total	190.3	26		

- $F_{crit}(2,18)=3.55$
- $F_{crit}(4,18)=2.93$
- Since 15.25 > 3.55, the effect for profession is significant
- Since 14.55 > 3.55, the effect for length is significant
- Since 23.46 > 2.93, the effect for profession * length is significant